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Abstract. We present a novel algorithm for binary image segmenta-
tion based on polygonal Markov fields. We recall and adapt the dynamic
representation of these fields, and formulate image segmentation as a
statistical estimation problem for a Gibbsian modification of an underly-
ing polygonal Markov field. We discuss briefly the choice of Hamiltonian,
and develop Monte Carlo techniques for finding the optimal partition of
the image. The approach is illustrated by a range of examples.

1 Introduction

One of the fundamental image analysis tasks is that of segmentation, i.e. to par-
tition the image in relatively homogeneous regio‘r‘ls [10]. Indeed, segmenting the
data is often the first step in image interpretation problems. The partition may
be achieved at several conceptual levels. At the lowest level, that of individual
pixels, segmentation amounts to classification of pixel values. At the other ex-
treme, the focus of attention are the objects that constitute a given image and
the goal is to extract them from the image.

A myriad of segmentation methods has been proposed, from elementary
thresholding through level set approaches and contour extraction methods to
scene modelling. In this paper, we propose to use polygonal field models. Thus,
we place ourselves at the intermediate conceptual level that regards a segmen-
tation as a coloured tessellation [8]. The advantage of such an approach is that
- in contrast to pixel based ones - global aspects of the image are captured. At
the same time there is no need to model all objects in the image, which is fea-
sible in restricted application domains only. Furthermore, a coloured polygonal
tessellation is a reasonable and widely applicable mathematical formalisation of
the intuitive concept of a segmentation, especially when compared to the rather
artificial level set model or to the notion of a collection of pixel labels that
do not necessarily have any spatial coherence. The idea can be traced back to
Clifford and Middleton [6]; from a computational point of view, a Metropolis—
Hastings style sampler was developed by Clifford and Nicholls [7] and applied to
an image reconstruction problem within a Bayesian framework. We shall use a
modification of the algorithm in Schreiber [12] which is conceptually and com-
putationally easier.
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2 Preliminaries and Notation

We aim to describe the contents of an image domain D, assumed to be an open,
convex and bounded subset of the plane (typically a rectangle), by means of a
family of non-intersecting polygonal contours in D, possibly nested or chopped
off by the boundary. We restrict ourselves to foreground/background segmen-
tation, so that a contour may be interpreted as a polygonal boundary between
black (foreground) and white (background) regions. We shall use the notation g
for a discretised image, S C D for the pixel set. The value ys at pixel s belongs
to some finite set L. A collection of contours is denoted by 7. For each collec-
tion, there are exactly two admissible black and white colourings. We use a hat
notation, 4, to describe a family of non-intersecting polygonal contours with its
associated colouring.

Our approach, as developed in [12] and [9], involves the following building
blocks.

1. The first ingredient is, intuitively speaking, the ability to generate a ’com-
pletely random’ polygonal field, both as a benchmark or reference field, and
as a tool for exploring the space of admissible polygonal configurations with-
out favouring any particular one. A reasonable choice is the so-called Arak
process [1,2,3,4], denoted by Ap.

2. Secondly, we need a goodness-of-fit measure H(y | 4) to quantify how well a
coloured polygonal configuration 4 matches the data image . Moreover, we
would like to be able to influence the geometry of 4 by assigning a higher
probability to large polygons with smooth boundaries that do not have spu-
rious edges. This is captured by a so-called regularisation term H(g), cf.
Section 3 in [9)].

3. The third and last ingredient is an updating mechanism which keeps the
distribution of the reference Arak field invariant while exhibiting good ex-
ploratory properties in the configuration space. To this end, we develop the
so-called disagreement-loop birth and death algorithm, originally introduced
in [12] and further extended in [9]. This mechanism can then be combined
with standard Metropolis and simulated annealing techniques to find an op-
timal segmentation 4.

The next three sections will elaborate a little further on the above points. A full
account can be found in [12,9].

3 The Arak Process: Dynamic Representation

The crucial idea underlying Arak’s construction [1] is to interpret the polygonal
boundaries of the field as the trace left by a particle travelling in two-dimensional
time-space. Thus, the two-dimensional image domain D is seen as a set of time-
space points (¢t,y) € D, with ¢ referred to as the time coordinate and with y
standing for the (1D) spatial coordinate. In this language, the basic Arak process
is constructed as follows.
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Birth events. The new particles are born in pairs at birth sites chosen in the
interior of the domain D according to a homogeneous Poisson point process of
intensity w. There are also boundary birth sites emitting single particles, gen-
erated by a Poisson point process with an appropriate intensity measure «(-)
concentrated on 3D, whose analytic details we omit here for simplicity of pre-
sentation, referring the reader to [2] for an exhaustive description.

* Each interior birth site emits two particles, moving with initial velocities
v and v" chosen according to the joint distribution #(dv’, dv”) = n~1|v/ —
v"|(14v"%)~3/2(14+0"?)~3/2dv/dv" on v’ < v”. This is equivalent to choosing
the angle ¢ € (0, 7) between the straight lines representing the space-time
trajectories of the emitted particles according to the density sin(¢)/2.

* Each boundary birth site z € 9D yields one particle with initial speed v
determined according to an appropriate distribution 8, (dv), see [2] for its
explicit form.

The colour in the interior of the newly created angle is chosen so as not to clash
with the one to the left of the trajectory (the past in time-space terms), with
minor modification for left-extreme points.

Evolution rules. All the particles evolve independently in time according to the
following rules.

* Between the critical moments listed below each particle moves freely with
constant velocity, hence dy = vdt.

* When a particle touches the boundary 0D, it dies.

* In case of a collision of two particles (equal spatial coordinates y at some
moment ¢ with (¢,y) € D), both of them die.

* The time evolution of the velocity v; of an individual particle is given by a
pure-jump Markov process so that P(vi+q: € du | vi = v) = ¢(v, du)dt for
the transition kernel q(v, du) := |u — v|(1 + u2)~3/2du.

The random polygonal configuration obtained in the above procedure is pre-
cisely the basic Arak process in D. As shown in [2], Ap enjoys a number of
striking properties. One of them is the two-dimensional germ Markov property,
stating that the conditional distribution of the field inside an open bounded re-
gion with piecewise smooth boundary given the outside configuration depends
only on the trace of this configuration on the boundary (colouring, intersection
points and intersection directions). The next important property is consistency:
for bounded open and convex Dy and Dy with D; C Ds the restriction of Ap, to
D; coincides in distribution with .4p,, see Theorem 4.1 of [2]. A crucial property
is the isometry invariance of the Arak process - while the translational invariance
can be easily deduced from the construction above, the rotational invariance is a
deep and non-trivial result that follows from the particular choice of the kernels
6.(-) and ¢(-,-) above. Moreover, one dimensional sections of .Ap happen to be
homogeneous Poisson point processes. Finally, a number of explicit formulae are
available for various numeric characteristics of Ap, such as the expected total
edge length, mean number of vertices, edges etc, see [2,4,7]. These properties
suggest that the Arak process is a suitable reference field.
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4 DModel-Based Image Segmentation

The model to be used for inference will be a Gibbsian modification of the polvgo-
nal random field Ap by means of a Hamiltonian (sometimes referred to as energy
function)

H{g:¥) =H(y|3) +HE) (1)

that is the sum of two terms, cf. Section 2. In other words, upon observation of
7. the likelihood of % with respect to the reference tield is weighted by a factor
exp [—H(7: ¥)], then normalised to have total probability mass 1. We take H(y
Y)Y = Ly(y.%), the sum of absolute differences between the actual pixel values
and those assigned by 5. For binary images, the L, distance reduces to |§A%],
the cardinality of the set of sites at which the observed colour does not match
that of the polygon, which can be interpreted probabilistically as a random noise
model in which each pixel value is Hlipped to the wrong colour independently of
other pixels with some probability p < 1/2 (see [5,9] for details). Thus, finding an
optimal 4* in the absence of further regularisation would amount to minimising
the misclassification rate |gA4}/]S]. In general, 4* is not unique. Moreover, it
tends to result in an over-segmentation. To overcome these problems, we added
a regularisation term H(%) = J#(v) proportional to the total edge length.

We are now ready to rephrase image segmentation as the task of finding a
coloured polygonal configuration 4 and a real 3 so that the Hamiltonian value
in (1) is a sufficiently good approximation of the global minimum.

5 Disagreement Loop Birth and Death Dynamics

To minimise (1), we use simulated annealing. Briefly, given a sequence of tem-
peratures T, decreasing to zero as n — oo, we sample from a probability density
proportional to exp{~H(#;3)/Tn] with respect to the reference field. Clearly it
suffices to describe how to sample for T, = 1. A crucial concept in our algorithm
is that of a disagreement loop {11, Section 2.2]. Consider adding a new birth site
Zg to configuration -y, and denote the resulting polygonal configuration by y®xg.
Then, for zo € Int D, the symmetric difference A% [zg; 7] := yA[y @ zq) is just
a single loop (a closed polygonal curve), possibly self-intersecting and possibly
chopped off by the boundary. Likewise, a disagreement loop A®|[xp;+] arises by
removing a birth site xy in polygonal configuration v; we write v © xg for the
resulting configuration. This is discussed in details in [11,12], here we only give
an illustration in Fig. 5. Recall that x(-) is the boundary birth intensity measure
as in Section 3. Then,

(DL:birth) with intensity [rdx + x(dx)]ds set § := 7, AA®[z;7] = 75 D 2.
Choose either of the two admissible colourings with probability 1/2 to obtain

4. Then, with probability min (1.exp [H(y; 4s) — H(¥; b)]) DUL Fesas = .
otherwise keep Ysids := Ys3
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Fig. 1

(DL:death) for each birth site z in 7, with intensity 1 - ds set § := y,AA®
[x;vs] = vs©z. Choose either of the two admissible colourings with probabil-
ity 1/2 to obtain . Then, with probability min (1, exp [H(5; 4s) — H(7;6))))
PUt Ystds i= 5, otherwise keep Fs44s 1= Ys-

By Theorem 1 in [12] and Theorems 1-2 in [9], under these dynamics the current
polygonal configuration converges in distribution to the Gibbsian modification of
Ap with the Hamiltonian H(g; 4). This algorithm exploits the fact that disagree-
ment loops A®:®[z; «] are very well suited for simulation. Since both the dynamic
representation of the Arak process in Section 3 and the simulation algorithm pre-
sented here involve a notion of time, in the sequel we refer to the former as to the
representation time (r-time) and to the latter as to the simulation time (s-time).

Extensions of the algorithm. In order to increase the efficiency of the basic
algorithm we endow it with a number of extra Monte Carlo moves. These include

1. Random rotations of the spatial and time axes in the dynamic representation
of the Arak process. While enlarging the set of possible moves, this does not
alter the stationary distribution of the process due to the isometry invariance
of A D-

2. Repetitive velocity updates: a particle undergoing a velocity update in r-
time, is allowed to ‘change its mind’ in the course of s-time and to randomly
modify the previously performed update. This can also be done so that the
stationary distribution is unaltered.

3. Rescaling, to guarantee better resolution at later stages of annealing.

6 Implementation and Examples

The algorithm was implemented in C++. General features are discussed briefly
below.

Representation of polygonal configurations. A configuration of a polygonal
Markov field is represented as a list of labelled vertices. The full description
of a vertex is provided by

— the Cartesian coordinates of the vertex;
— two pointers to the neighbouring vertices;
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— the virtual lengths of the segments that emanate from the given vertex; these
are the lengths the segments would have if the corresponding particles were
the only ones present in the system and evolved in an empty environment.
The actual lengths of these segments are usually smaller due to collisions.

The list of vertices is sorted by increasing z-coordinate (r-time coordinate).

Generation of the initial configuration. The initial configuration for our MCMC
procedure is generated according to the dynamic representation of the basic
Arak process as discussed in Section 3. This is done in a single left-to-right
sweep through the image domain, by successively updating in r-time two priority
queues that store respectively

— the birth sites with r-time coordinate exceeding the current r-time, and vir-
tual end points (with the distance from the respective initial point given by
the corresponding virtual length) of segments generated so far, for which the
r-time coordinate exceeds the current r-time;

— wirtual collision points which are all possible pairwise intersection points of
currently existing virtual segments (i.e. segments joining an initial point to
its corresponding virtual end point) lying forward in r-time.

At each step of the algorithm, the next vertex to arise in the course of the r-
time evolution is determined by choosing that vertex that minimises the r-time
coordinate in both queues. Consequently, the contents of these queues can be
regarded as a current collection of ‘candidates’ for the next vertex.

Updates. Our main configuration-modifying operations are adding a new birth
site (disagreement loop birth (DL:birth)) and removing an existing one (dis-
agreement loop death (DL:death)). To add a new birth site, we first choose its
position uniformly at random within the image domain, and then we let the new-
born particles evolve and interact with the existing ones according to the usual
evolution rules. Likewise, when removing a given birth site, we let the remaining
particles obey the usual evolution rules. Both these updates are implemented us-
ing the same data structures as when generating the initial configuration above.

Evaluation of the Hamiltonian. For binary images g, H(§ | ¥) requires the
evaluation of the number of misclassified pixels upon each update proposal. To
this end we apply the divergence theorem, constructing a real-valued vector
field such that the input image data § coincides with its divergence, and then
computing appropriate flux integrals along the suitably oriented contours of the
polygonal field. For grey level images, we resort to Monte Carlo sampling to
calculate the L, distance between g and 4.

Examples. Here we present a few typical segmentations obtained by the ap-
proach. The data in the first example consist of a spray-traced image of a happy
face. For the cooling schedule we used 1/T,, := 20.0 4+ 0.009 * . The result af-
ter approximately 1 150 000 steps is given in Figure 2a. The misclassification
rate we achieved was 3 percent, as visualised in the corresponding graph [Fig.
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(a) segmented ’happy face’ (b) misclassification rate graph

Fig. 2

4

(a) segmented letter A (b) segmented letter B (c) segmented eagle
Fig. 3

2b]. Average execution time for a single iterate was 0.0061 second for 2 CPUs
architecture with Intel Xeon 2.4 GHz processors and 2 GB RAM. The data of
the second and third image are given by the first letters of the alphabet, ‘A’ and
‘B’. The results under the same cooling regime are given in Figures 3a and 3b,
and were achieved after 800 000 and 2 million iterations respectively. The mis-
classification rate is 3 percent in both cases. Finally, Fig. 3¢ presents a sample
segmentation of a grey level eagle image from the Berkeley segmentation dataset
and benchmark site. The misclassification rate reached after 860 000 iterations
was again 3 percent.

7 Discussion and Future Work

Here, for brevity, we restricted ourselves to foreground/background segmenta-
tion. However, the general framework can easily be extended to allow for seg-
mentation into k > 2 classes of grey level, colour, or textured images [9]. Suitable
consistent polygonal field models are available with more flexibility in the type
of intersections [4], but care is needed with respect to the Hamiltonian. Indeed, it
is the object of our current work to develop software for such more complicated
cases, and to evaluate the performance of our algorithm on benchmark data
available at: http://www.cs.berkeley.edu/projects/vision/grouping/segbench/
or http://mosaic.utia.cas.cz.
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A preliminary conclusion is that, in contrast to model-based probabilistic
image segmentation at the pixel level, the topology of the foreground object is
preserved better. Our approach is also relatively robust with respect to noise.
The price to pay is that fine details are not recovered, especially those whose
sizes fall below the characteristic scale of the polygonal field. This problem could
easily be solved in a post-processing smoothing phase. An alternative could be to
gradually decrease the characteristic scale of the field (multi-resolution approach)
or to build local updates in the spirit of [7] into the algorithm.
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